The Normal Distribution

- Properties of the Normal Distribution
- Shapes of Normal Distributions
- Standard (Z) Scores
- The Standard Normal Distribution
- Calculate areas within the normal distribution

Review:

So far we have been examining a variety of distributions

- Frequency distributions - (negatively and positively skewed)
- Central tendencies
- (mean, median, mode)
- Variance and Standard deviation

Coming Up:
The next type of distribution is referred to as the normal curve.

Properties of the Normal Distributions

- Used with linear variables
- A bell-shaped and
symmetrical theoretical
(i.e., perfect) distribution as compared to an empirical (actual, real) distribution
- with the mean, the median, and the mode all coinciding at its peak and

with frequencies gradually decreasing at both ends of the curve.

What do we mean when we say the normal distribution is a "theoretical" distribution and not an empirical distribution? What is an empirical distribution? A theoretical distribution?

Normal Distributions

- Normal Distribution
- is a theoretical ideal distribution. Real-life empirical distributions rarely, if ever, match this model perfectly.
- However, many things in life do approximate the normal distribution
 and are said to be
"normally distributed"
- For example, grades, SAT scores, others?

Normal Distributions

One reason we study the normal distribution is because
characteristics (i.e., properties) of the normal distribution can be applied to empirical distributions (i.e. real-life variables) that are approximately normally distributed.

In this chapter, we will learn

various characteristics (i.e.
properties) of the normal
distribution that can help us
when we are examining real data that is approximately normal

Scores "Normally Distributed?"

Midpoint Score	Frequency Bar Chart	Freq.	Cum. Freq. (below)	\%	Cum \% (below)
40 *		4	4	0.33	0.33
50	******	78	82	6.5	6.83
60	*************	275	357	22.92	29.75
70	******************	483	840	40.25	70
80	************	274	1114	22.83	92.83
90	******	81	1195	6.75	99.58
100 *		5	1200	0.42	100

- Is this distribution normal?

To answer this question there are two things to initially examine: (1) look at the shape illustrated by the bar chart, and (2) calculate the mean, median, and mode.

Scores "Normally Distributed?"

Table 10.1 Final Grades in Social Statistics of 1,200 Students (1983-1993)					
Midpoint Score	Frequency Bar Chart	Freq.	Cum. Freq. (below)	$\%$	Cum \% (below)
40^{*}	4	4	0.33	0.33	
$50^{* * * * * *}$	78	82	6.5	6.83	
$60^{* \pi * * * * * * * * * *}$	275	357	22.92	29.75	
$70^{* * * * * * * * * * * * * * * *}$	483	840	40.25	70	
$80^{* \pi * * * * * * * * * *}$	274	1114	22.83	92.83	
$90^{* \pi * * * *}$	81	1195	6.75	99.58	
100^{*}	5	1200	0.42	100	

- The Mean $=70.07$
- The Median = 70
- The Mode $=70$

Scores Normally Distributed!

- The Mean $=70.07$
- The Median $=70$
- The Mode = 70
- Since all three are essentially equal, and the bar graph appears to be normally distributed, we can conclude these data are normally distributed.
- Also, since the median is approximately equal to the mean, we know that the distribution is
symmetrical (equal on both sides of the mid point, that is, mirror images on each half).

Different Shapes of the Normal Distribution

Notice that the Standard deviation determines the relative width of the distribution; the larger the standard deviation, the wider the curve (because the larger the SD the further the cases are, on average, from the mean.

Since the Standard Deviation reflects the width of the curve, lets review what the standard deviation is:

A measure of the population that reflects the average distance of the cases (or average deviation of the cases) from the mean.
A measure of variation for interval-ratio variables; it is equal to:

$$
s=\sqrt{s_{Y}^{2}}=\sqrt{\frac{\sum(Y-\bar{Y})^{2}}{N-1}}
$$

The normal curve also allows us to predict what percentage of the cases fall above or below a specific value or "raw score" (or in this case grade).

In-Class Assignment:

Finding a grade where a proportion of students fall above or below the grade.

Using the data presented in Table 10.1:

$$
\sqrt{\frac{\sum(Y-\bar{Y})^{2}}{N-1}}
$$

(1) what is the mean?
(2) the standard deviation?
(3) roughly 84% of the students received a grade of
(4) roughly 16% of the students scored \qquad or lower?
(5) 95% of the students scored \qquad or higher?

For example:
--what percentage of the students fell above a grade of 70 (mean=70; SD=10)?
--what percentage fell above a grade of 80 ?
--what percentage fell above a grade of 90?
--what percentage fell below a grade of 60 ?
Figure 10.3 Percentages Under the Normal Curve

The normal curve allows us to estimate what percentage of the cases fall between any two points.

For example, what percentage of students scored between 70 and 80 on the statistics tests (mean=70; SD=10).
Between 70 and 60 ? Between 60 and 80 ? Between 70 and 90 ? Between 70 and 50?

Figure 10.3 Percentages Under the Normal Curve

Standard (Z) Score

The number of standard deviations that a given score is above or below the mean.

In our example, if "Jill" had a Z score (standard deviation) of 1, where would she fall on the normal cure?

What percentage of the students scored less than Jill?

If Mary had a Z score of -3 where would she fall on the normal curve and what percentage of students scored less than her?

Standard (Z) Score
 $$
Z=\frac{Y-\bar{Y}}{S_{y}}
$$

Example from previous slide. We'll pretend we've calculated the mean for all students and found it to be 80 and we've calculated the SD for all students and found it to be 5 . We want to determine the Z score for a student who received an 88 .

Standard Normal Curve

How is the "standard" normal curve different from the normal curve?

The normal curve is in raw scores while the standard normal curve shows standard scores.

Using the Computer to Compute Z Scores:

1. Open a data set
2. Click Analyze, then descriptive statistics, then descriptives
3. Double click on a variable (grade point average) to move it to the variables box.
4. Click Save standardized values as variables in the Descriptives dialog box
5. Click OK.
6. Examine your data file. Notice that a new variable has been created. Each student has received a z score for the variable. A student with a large z score will have a score further from the mean score.

凩訝

(see you later)

